HEWAN SEBAGAI MODEL PENYAKIT INFEKSI PERNAFASAN YANG DISEBABKAN OLEH BAKTERI

Authors

  • Noor Andryan Ilsan STIKes Mitra Keluarga
  • Siti Nurfajriah STIKes Mitra Keluarga
  • Maulin Inggraini STIKes Mitra Keluarga

DOI:

https://doi.org/10.47522/jmk.v4i1.104

Keywords:

Infeksi bakteri, Penyakit pernafasan, Hewan uji, Galleria mellonella, In vivo

Abstract

Pendahuluan: Penyakit infeksi pernafasan karena bakteri merupakan penyakit yang memiliki kasus tinggi di Indonesia. Penyakit pernafasan karena infeksi bakteri juga bersifat nosokomial dan dapat menyebar di komunitas. Bakteri yang menyebabkan infeksi pernafasan ini sangat beragam baik dari jenis bakterinya, tingkat resistensinya, maupun tingkat virulensinya. Tingkat virulensi bakteri mempengaruhi konsekuensi penyakitnya pada pasien.

Metode: Dalam menentukan virulensi bakteri secara in vivo, beberapa hewan dapat digunakan sebagai model infeksi pernafasan karena bakteri seperti tikus, ikan zebra (Danio rerio), ngengat lilin (Galleria mellonella), nematoda Caenorhabditis elegans.

Hasil: Dari sudut pandang author, jika menilik biaya dan kemudahan sebagai prioritas, ulat G. mellonella memiliki beberapa keunggulan dibandingkan hewan lain seperti biaya produksi murah, tidak membutuhkan perizinan etik, dapat diinkubasi pada suhu 37° C, juga sudah banyak publikasi yang menggunakan ulat ini dalam uji virulensi bakteri.

Kesimpulan: Review artikel ini akan menjelaskan perbandingan kelebihan dan kekurangan hewan model tersebut dalam model in vivo bakteri infeksi pernafasan.

Author Biographies

Noor Andryan Ilsan, STIKes Mitra Keluarga

Program Studi DIII Teknik Laboratorium Medis

Siti Nurfajriah, STIKes Mitra Keluarga

Program Studi DIII Teknik Laboratorium Medis

Maulin Inggraini, STIKes Mitra Keluarga

Program Studi DIII Teknik Laboratorium Medis

References

Ali, S., Champagne, D.L., Spaink, H.P., & Richardson, M.K. 2011. Zebrafish embryos and larvae: a new generation of disease models and drug screens. Birth Defects Res Embryo Today. 93: 115–133.

Alper, S., Laws, R., Lackford, B., Boyd, W.A., Dunlap, P., & Freedman, J.H. 2008. Identification of innate immunity genes and pathways using a comparative genomics approach. Proc Natl Acad Sci U.S.A. 105:7016–7021

Apt, A., & Kramnik, I. 2009. Man and mouse TB: contradictions and solutions. Tuberculosis (Edinb.). 89:195–198

Aziz, R.K., Kansal, R., Abdeltawab, N.F., Rowe, S.L., Su, Y., & Carrigan D, 2007. Susceptibility to severe Streptococcalsepsis: use of a large setofisogenic mouse lines to study genetic and environmental factors. Genes Immun. 8:404– 415

Brannon, M.K., Davis, J.M., Mathias, J.R., Hall, C.J., Emerson, J.C., & Crosier, P.S. 2009. Pseudomonas aeruginosa Type III secretion system interacts with phagocytes to modulate systemic infection of zebrafish embryos. Cell Microbiol. 11:755–768

Brown, S. E., Howard, A., Kasprzak, A. B., Gordon, K. H., & East, P. D. 2009. A peptidomics study reveals the impressive antimicrobial peptide arsenal of the wax moth Galleria mellonella. Insect Biochem Mol Biol, 39(11), 792-800. doi:10.1016/j.ibmb.2009.09.004

Browne, N., Heelan, M., & Kavanagh, K. 2013. An analysis of the structural and functional similarities of insect hemocytes and mammalian phagocytes. Virulence, 4(7), 597-603. doi:10.4161/viru.25906

Chen, B., Weisbrod, T.R., Hsu, T., Sambandamurthy, V., Vieira-Cruz, D., & Chibbaro, A. 2011. Einstein Contained Aerosol Pulmonizer (ECAP): improved biosafety for multi-drug resistant (MDR) and extensively drug resistant (XDR) Mycobacterium tuberculosis aerosol infection studies. Appl Biosaf. 16:134–138

Glavis-Bloom, J., Muhammed, M., Mylonakis, E. 2012. Of model hosts and man: using Caenorhabditis elegans, Drosophila melanogaster and Galleria mellonella as model hosts for infectious disease research. Adv Exp Med Biol. 710:11–17

Green, R.M., Gally, F., Keeney, J.G., Alper, S., Gao, B., & Han, M. 2009. Impact of cigarette smoke exposure on innate immunity: a Caenorhabditis elegans model. PLoSONE. 4(8):e6860

Hulme, S.E., & Whitesides, G.M. 2011. Chemistry and the worm: Caenorhabditis elegans as platform for integrating chemical and biological research. Angew Chem Int Ed Engl. 50:4774–4807

Ilsan, N. A., Lee, Y. J., Kuo, S. C., Lee, I. H., & Huang, T. W. 2021. Antimicrobial Resistance Mechanisms and Virulence of Colistin- and Carbapenem-Resistant Acinetobacter baumannii Isolated from a Teaching Hospital in Taiwan. Microorganisms, 9(6). doi:10.3390/microorganisms9061295

Insua, J.L., Llobet, E., Moranta, D., Perez-Gutierrez, C., Tomas, A., Garmendia, J., & Bengoechea, J.A. 2013. Modeling Klebsiella pneumonia pathogenesis by infection of the wax moth Galleria mellonella. Inf Immun. 81(10):3552-3565

Irvin, C.G., & Bates, J.H.T. 2003. Measuring the lung function in the mouse: the challenge of size. Respir Res.4:4

Kanther, M., & Rawls, J.F. 2010. Host-microbe interactions in the developing zebrafish. Curr Opin Immunol. 22:10–19

Kim, C. H., Shin, Y. P., Noh, M. Y., Jo, Y. H., Han, Y. S., Seong, Y. S., & Lee, I. H. 2010. An insect multiligand recognition protein functions as an opsonin for the phagocytosis of microorganisms. J Biol Chem, 285(33), 25243-25250. doi:10.1074/jbc.M110.134940

Lavigne, J., Cuzon, G., Combescure, C., Bourg, G., Sotto, A., & Nordmann, P. 2013. Virulence of Klebsiella pneumoniae isolates harbouring blaKPC-2 carbapenemase gene in a Caenorhabditis elegans model. Plos one. 8(7): 1-7

Leung, C., Chijioke, O., Gujer, C., Chatterjee, B., Antsiferova, O., & Landtwing, V. 2013. Infectious diseases in humanized mice. Eur J Immunol. 43:2246–2254

Lu, A., Zhang, Q., Zhang, J., Yang, B., Wu, K., Xie, W., . . . Ling, E. 2014. Insect prophenoloxidase: the view beyond immunity. Front Physiol, 5, 252. doi:10.3389/fphys.2014.00252

Lugo-Villarino, G., Balla, K.M., Stachura, D.L., Bañuelos, K., Werneck, M.B.F., & Traver, D. 2010. Identification of dendritic antigen-presenting cells in the zebrafish. Proc Natl Acad Sci U.S.A. 107:15850–15855

Marcoleta, A.E., Varas, M.A., Ortiz-Severin, J., & Vasquez. 2018. Evaluating different traits of Klebsiella pneumoniae using Dictyostelium discoideum and Zebrafish larvae as host models. Front Cel Infect Microbiol. 8(30):1-20

Mizgerd, J.P., & Skerrett, S.J. 2008. Animal models of human pneumonia. Am J Physiol Lung Cell Mol Physiol. 294:L387–L398

Mowlds, P., Coates, C., Renwick, J., & Kavanagh, K. 2010. Dose-dependent cellular and humoral responses in Galleria mellonella larvae following beta-glucan inoculation. Microbes Infect, 12(2), 146-153. doi:10.1016/j.micinf.2009.11.004

Oktaria, V., Danchin, M., Triasih, R., Soenarto, Y., Bines, J. E., Ponsonby, A. L., . . . Graham, S. M. 2021. The incidence of acute respiratory infection in Indonesian infants and association with vitamin D deficiency. PLoS One, 16(3), e0248722. doi:10.1371/journal.pone.0248722

Page, D.M., Wittamer, V., Bertrand, J.Y., Lewis, K.L., Pratt, D.N., & Delgado, N. 2013. An evolutionarily conserved program of B-cell development and activation in zebrafish. Blood 122:e1–e11

Pilloux, L., LeRoy, D., Brunei, C., Roger, T., & Greub, G. 2016. Mouse model of respiratory tract infection induced by Waddlia chondrophila. Plos one. 11(3):1-12

Ramachandran, S., Ruef, B., Pich, C., & Sprague, J. 2010. Exploring zebrafish genomic, functional and phenotypic data using ZFIN. Curr Protoc Bioinformatics. Chap 1,Unit1.18

Ramarao, N., Nielsen-Leroux, C., & Lereclus, D. 2012. The Insect Galleria mellonella as a powerful infection model to investigate bacterial pathogenesis. J Vis Exp. 70:e4392

Rauta, P.R., Nayak, B., Das, S. 2012. Immune system and immune responses in fish and their role incomparative immunity study: a model for higher organisms. Immunol Lett. 148:23–33

Redd, M.J., Kelly, G., Dunn, G., Way, M., & Martin, P. 2006. Imaging macrophage chemotaxis in vivo: studies of microtubule function in zebrafish wound inflammation. Cell Motil Cytoskeleton. 63:415–422

Ruyra, A., Cano-Sarabia, M., García-Valtanen, P., Yero, D., Gibert, I., & Mackenzie, S.A. 2014. Targeting and stimulation of the zebrafish (Danio rerio) innate immune system with LPS/dsRNA-loaded nano liposomes. Vaccine 32, 3955–3962

Schulenburg, H., & Ewbank, J.J. 2007. The genetics of pathogen avoidance in Caenorhabditis elegans. Mol Microbiol. 66:563–570

Seitz, V., Clermont, A., Wedde, M., Hummel, M., Vilcinskas, A., Schlatterer, K., & Podsiadlowski, L. 2003. Identification of immunorelevant genes from greater wax moth (Galleria mellonella) by a subtractive hybridization approach. Dev Comp Immunol, 27(3), 207-215. doi:10.1016/s0145-305x(02)00097-6

Shivers, R.P., Pagano, D.J., Kooistra, T., Richardson, C.E., Reddy, K.C., & Whitney, J.K. 2010. Phosphorylation of the conserved transcription factor ATF-7 byPMK1p38MAPK regulates innate immunity in Caenorhabditis elegans. PLoS Genet. 6:e1000892

Sifri, C.D., Begun, J., & Ausubel, F.M. 2005. The worm has turned microbial virulence modeled in Caenorhabditis elegans. Trends Microbiol. 13:119–127

Sprynski, N., Valade, E., & Neulat-Ripoll, F. 2014. Galleria mellonella as an infection model for select agents. Methods Mol Biol. 1197:3–9

Strähle, U., Scholz, S., Geisler, R., Greiner, P., Hollert, H., & Rastegar, S. 2012. Zebrafish embryos as analternative to animal experiments- a commentary on the definition of the on set of protected life stages in animal welfare regulations. Reprod Toxicol. 33:128–132

Sulston, J., & Hodgkin, J. 1988. “Methods” in The Nematode Caenorhabditis elegans, ed.W.B.Wood (NewYork, NY:Cold Spring Harbor Laboratory Press):587–606

Sunyer, J.O., Boshra, H., & Li, J. 2005. Evolution of anaphylatoxins, their diversity and novel roles ininnate immunity: insights from the study of fish complement. Vet Immunol Immunopathol. 108:77–89

Tan, M.W., Mahajan-Miklos, S., & Ausubel, F.M. 1999. Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Proc Natl Acad Sci U.S.A. 96: 715–720

Van Leeuwen, L.M., van der Sar, A.M., & Bitter, W. 2015. Animal models of tuberculosis: Zebrafish. Cold Spring Harb Perspect Med. 5:1-14

Whitten, M. M., Tew, I. F., Lee, B. L., & Ratcliffe, N. A. 2004. A novel role for an insect apolipoprotein (apolipophorin III) in beta-1,3-glucan pattern recognition and cellular encapsulation reactions. J Immunol, 172(4), 2177-2185. doi:10.4049/jimmunol.172.4.2177

Downloads

Published

2021-12-17

How to Cite

Ilsan, N. A. ., Nurfajriah, S., & Inggraini, M. . (2021). HEWAN SEBAGAI MODEL PENYAKIT INFEKSI PERNAFASAN YANG DISEBABKAN OLEH BAKTERI. Jurnal Mitra Kesehatan, 4(1), 48–56. https://doi.org/10.47522/jmk.v4i1.104